Exercise 69

For the following exercises, use the written statements to construct a polynomial function that represents the required information.

An open box is to be constructed by cutting out square corners of x-inch sides from a piece of cardboard 8 inches by 8 inches and then folding up the sides. Express the volume of the box as a function of x.

Solution

Draw a schematic of the square with edges cut out.

The new area is $(8-2 x)(8-2 x)=64-16 x-16 x+4 x^{2}=64-32 x+4 x^{2}$, and the height of the box is x. Therefore, the volume of the open box is

$$
\begin{aligned}
V(x) & =(\text { area })(\text { height }) \\
& =\left(64-32 x+4 x^{2}\right) x \\
& =64 x-32 x^{2}+4 x^{3} .
\end{aligned}
$$

